Aqua Notes

2 Ways to Evaluate a Swimmer for Breaststroke Kick

11 Comments

Flexibility is a huge part of a swimmer’s ability. In freestyle, backstroke and fly, there are two joints that require extraordinary flexibility in order to excel, the shoulders (particularly extension) and plantar flexion of the ankle. Obviously, the former helps in the pulling motion and recovery, while the latter helps in the kicking speed.

In breaststroke, the two most important areas of mobility are in the lower (lumbar) spine and the hip, particularly with external rotation. A flexible lower back enables the swimmer to elevate higher during the pulling motion and create more coupling energy both for the pull and the following breaststroke kick. The external rotation of the hip enables a swimmer to create more surface area of the instep during the propulsion of the kicking motion.

At The Race Club we often say that swimming is a sport of tenths of seconds, millimeters and degrees. What is meant by that is that there is a small margin of error between getting it right or not. There is neither a lot of forgiveness nor mercy in the water. Breaststroke kick is a good example of that.

For every additional degree of external rotation in the hip, I would estimate that the propulsion from the kick increases by 5 -10 %. In other words, if one were to increase the external rotation of the hip by 5 degrees, one would achieve 25 to 50% more propulsive force with the same amount of effort, just by increasing the surface area of the instep pushing backward. To me, that seems worth fighting for.

There are two very simple tests to evaluate your swimmers’ mobility and potential to kick breaststroke fast. The first is the hip test. Have the swimmer sit on a chair or bench and cross the legs with one ankle on top of the thigh of the other leg. Flex the foot of the bent leg to protect the knee. Then, with arms stretched straight overhead, have the swimmer bend forward at the waist with a straight back, allowing the arms and hands to fall toward the ground. A good breaststroker (or at least potentially) will be able to put the palms of their hands all the way to the ground. A swimmer with limited external rotation in the hip will not even come close.

For those with limited hip flexibility, the same stretch can be used daily, holding the position for a minute or longer on each side, in order to improve the breaststroke kicking propulsion. There are many modifications of this hip stretch and just like in swimming technique, some work better based on the individual. When I was at Indiana University, I was an IMer with a very poor breaststroke (an extinct breed of IMer). My coach, Doc Counsilman, had me walk around for hours with what he called ‘alligator shoes’ on. These were a pair of high top Converse All-Stars nailed to a board angled at 45 degrees to the ground. The hope was to increase my ankle dorsi-flexion by lengthening the gastrocnemius muscle and tendon (calf and Achilles tendon). Unfortunately, that is like stretching a Trans-Atlantic cable….and I never did get much faster. We were just focused on the wrong place. The hip, which is a ball and socket joint, is a much easier place to increase mobility than stretching the Achilles tendon and gastrocnemius muscle.

The other test I use for breaststroke is to evaluate the flexibility of the lower back. First allow a proper warm up to loosen the low back and strengthen the core. Then, hold down the ankles of a prone swimmer and have them arch upwards with the upper body as far as they can. Olympian Rebecca Soni, can bend her body to nearly a 90 degree angle. Or one can do a back pushup, which requires considerable spinal flexibility and arm strength. The closer the swimmer can bring their hands toward the feet on the ground, the more flexibility is present in the lower back. There are modifications to begin increasing low back flexibility to slowly work up to these back bending exercises.

A strong kick is a key to swim fast breaststroke. As much as 80% of a swimmer’s propulsion in breaststroke comes from the kick. The power of the kick depends on having a large surface area of the instep accelerating quickly backward, coupled with the energy of the upper body pressing forward and the head snapping downward. To do well, both motions require extraordinary flexibility in the back and hip, plus strong legs and core.

Do these two simple mobility tests for each of your swimmers. If your swimmers don’t have enough hip mobility, either develop a stretching/dryland program whereby they can develop more, or don’t focus on the IM or breaststroke. Either option is acceptable. Just don’t expect them to swim fast breaststroke without having this type of flexibility.

Yours in swimming,

Gary Sr.

Watch Swimisodes Breaststroke Wall Kick


What the Heck Am I Doing Here?

1 Comment
Gary Hall Jr won Olympic silver medals at the 96 Olympics; he then took time off, and returned to win the gold at the 2000 Olympics.

When things inevitably get tough in life and in sport, the greatest threat often arises insidiously from within our minds in the form of the question: “What the heck am I doing here?”

This question is never asked when things are fun, the answer is just too obvious then, but it waits for us, lurking in our moments of greatest exhaustion, pain and weakness. A champion is so much more than just medals and titles. A champion is a good answer to this question.

This question cuts through to the very essence of our being. There can’t be a shadow of doubt. At that desperate moment, when faced with this profound self-inquiry, there better be an honest answer. If you don’t have one, or are not honest with yourself at that point about exactly what you are doing and why you are doing it, you are going to be in trouble as everything falls apart.

As Friedrich Neitzche said, “He who has a why to live can bear almost any how”. The answer to that profound question of “what the heck am I doing here?” is what makes your mind your weapon or your weakness. The answer gets you up before the sun and drives you beyond your comfort zone and sustains you out there. This answer is the essence of toughness and applies to everything, from enduring the last few miles of a marathon to the last few rounds of chemotherapy.

Rudyard Kipling so eloquently expressed this type of mental fortitude with these lines from his famous poem entitled If:

If you can force your heart and nerve and sinew
To serve your turn long after they are gone,
And so hold on when there is nothing in you
Except the Will which says to them: “Hold on!”

Fundamentally this type of endurance only arises if your answer to the question of “What am I doing here?” is good enough. It can’t come from anyone else but yourself, and no one else has to know it. The actual answer is unimportant; what is important is that you believe it wholeheartedly.

For me, I know. The answer is always changing, but to me, it’s always a good one; it has to be. I do it because I love it, because I can, for those who can’t, and because it’s a beautiful thing. A very good answer can sustain a sporting career for decades.

To gain experience, be consistent and enjoy longevity, one must not be afraid take time out to get re-inspired, re-focus and set new goals. The answer to our question is going to change as we change. In order to have a good answer it will become absolutely necessary to take a step back from the routine and the grind to reassess things and re-answer that question from time to time.

This is as much a part of being a champion as the act of consistently performing at the top of your game. Gary Hall Jr won Olympic silver medals at the ’96 Olympics; he then took time off, and returned to win the gold at the 2000 Olympics. Then after again taking almost two years off focusing on other interests, he returned to live a spartan existence of tirelessly toiling after perfection for another two years, despite suffering from diabetes, to once again win the gold at the 2004 Olympics.

For him, the answer to that simple but profound question of “What the heck am I doing here?” was worth more than all the minor competitions missed and passionless days of going through the motions during his years away from the sport. His answer, even though he took time away to find it, ensured his longevity, which gave him the experience to finish on top the Olympic podium quadrennial after quadrennial.

I am always impressed by consistency more than anything else when it comes to athletes and their sporting careers. From experience, I know that behind the impressive consistency lies great willpower, tenacity and toughness that arises from having a perfect answer to the question, and I always wonder what it might be for each person.

-George Bovell

• Find George on Twitter: @georgebovell

Watch George Freediving and Spearfishing

Watch George in Swimming Technique

Watch George in Dryland Stretching Exercises

george bovell

How to Effectively Do a Slingshot Start

6 Comments

There are two options for the track start using the back footplate, weight forward or weight backward (slingshot). Before the introduction of the footplate, on the elite men’s side, there was an equal mix of both techniques being used, with neither having a clear advantage over the other. On the elite women’s side, most women used the weight forward technique.

Once the back footplate was introduced, the dynamics of the start changed and today, most elite swimmers prefer the slingshot technique, shifting their weight to the more favorable angle of the back plate. But not all do.

The advantages of the slingshot start are that one can more effectively use the arms, shoulders and both legs to create the propulsive forces, first the back leg, then the front. With the weight forward start, while virtually all of the propulsive force comes from the front leg, this technique generally allows the swimmer to get off the block faster.

With either technique, when the command to take your mark is given, the fingers must grip the front of the block or the bars that run parallel on the top of the block tightly while the arms pull upward. It does not seem to matter too much if the arms are straight or bent slightly for this motion, so long as there is tension on the arms. At The Race Club, we believe that given the option of the bars on top of the block, it is better to grab a hold of them as far forward as possible, rather than grabbing the front of the block. That allows the bend of the knee and waist to be slightly less, creating a mechanical advantage.

If using the slingshot technique, while pulling upward with the arms, you want to feel the weight of the body shift from the front foot to the back foot, being careful not to lean back too much. If you are leaning backward too far, it simply takes too long to get off the block. Moving the body just five or ten degrees backward will cause the shift in weight to occur. Once you feel the majority of the weight on the back foot, stop the motion backward and wait for the beep. The back foot should not be flat, but the heal slightly off the plate. The head should be kept in the neutral or slightly forward-extended position. If using the weight forward technique, the body weight will remain on the front foot, while pulling upward with the arms.

To be in the best possible readiness for the start, there is a right amount of tension one needs to place on the arms and legs. If one is too tense, putting too much pressure on either arms or legs, there is a good chance of flinching, resulting in a disqualification. Too relaxed and one cannot react fast enough or with the required force to get a great start. On a scale of one to ten, where one is completely relaxed and ten is like a twig ready to snap, the right amount of tension will be around a seven. That amount of tension seems to enable a swimmer to create enough force without losing control.

A lot of attention is being given to so-called reaction times, posted for each swimmer on the scoreboard after the start. These times represent the time lapse between the sound of the beep and the front toes leaving the block, which is not really the reaction time. Since the weight-forward starters do not have as far to go to get off of the block, they will nearly always post faster start times. What really matters, however, is where the swimmer breaks out in comparison to all the other swimmers in the race, not how fast they left the block. Most of the elite weight-forward starters that I have seen stay under water for seven to eight fast dolphin kicks, so the speed of the dolphin kick can also influence the technique one chooses.

With either technique you prefer, by following these instructions, you will now be cocked and ready for the starter’s beep. Get ready for our Swimisodes Slingshot Start to launch next week. Watch the first video in our start series: Swimisodes -Swimming Starts – How to Position Your Feet https://theraceclub.com/videos/swimisodes-swimming-starts-position-feet/

Yours in swimming,

Gary Sr.


The Magic of The Relaxed Wrist

3 Comments

Have you ever noticed that the fastest swimmers in the pool typically look like they are swimming with less effort than the slower ones? It is not a coincidence. There is a reason and it is mostly in the relaxed wrist.

The part of the swimmer we see during the freestyle race is the part above the water…the back of the head, the back, the feet breaking the surface, and the recovery of the arms. Although most of the real work is going on under the surface, the few tenths of a second that the arms are recovering above the water between each underwater pull turns out to be extremely important for the swimmer.

The human muscle can recover in a surprisingly short amount of time, if we give it a chance. If a muscle is relaxed for just a brief period, tenths of seconds, the ions involved in the exchange across the cell membranes, mostly sodium and potassium, necessary for a strong muscular contraction, can find their way back home in time for another good pull. If we keep the muscles tense and contracted, they fatigue much sooner. The muscles are simply unable to sustain the strong contractions for very long.

I am not certain what percentage of our total available muscle fibers are contracting during any one single freestyle pull, in any of the muscles involved in this motion (likely less than 50%), but it is significantly higher when the muscles have had an opportunity to recover than when they haven’t. Relaxing the wrist and hand on the recovery of the freestyle stroke enables the muscles in the arm to recover better than when the wrist is stiff and the fingers are clenched together. You don’t even need to be in the water to figure that out.

It seems like a simple proposition. Relax the wrist and fingers during the recovery and you will likely pull stronger and for a longer period of time, two desirable outcomes, particularly if you want to swim fast. Yet many swimmers don’t get it. In their overzealous attempt to quickly get to the other end of the pool, they never let go of their intensity. They never chill out on the recovery. When the arm moves over the top of the water, they look as if rigor mortis is setting in, completely stiff and un-relaxed. As a result, they get tired and don’t keep swimming fast.

Don’t underestimate the importance of relaxing the wrist and fingers during this recovery period. I haven’t seen a great swimmer yet that hasn’t learned that. At The Race Club, we spend a lot of time on one particular drill, the six-kick, one-stroke drill, stopping the hand at 12 o’clock, straight above the shoulder. At that point, the swimmer dangles the wrist from side to side for a second or two, before continuing on with the freestyle recovery. Even this simple drill is a challenge for many swimmers. At the top their recovery, the dangle looks more like a parade wave, rather than a hand that is connected to the forearm by a few threads, hanging down toward the water, pulled by gravity. In order to recover well, there has to be complete relaxation of the wrist and fingers.

It is surprising how this single act of relaxation of the hand and fingers during those few tenths of a second can not only make you look like a great swimmer, you will actually start to act like one, swimming faster. In life, it is commonly held that taking vacations is a good thing. They help to keep us energized and strong during our working months. The same could be said of taking a few ten-minute breaks during our workday. They keep us fresh and more productive.

Make your swim more productive. Take the break when you can get it, on the recovery, by relaxing your wrist and fingers to sustain a faster, stronger pulling motion. As my Masters coach in Phoenix, Troy Dalbey, used to tell me, “Swim with soft hands on the recovery”. Troy was right. Softer, relaxed hands make for faster swimmers.

Yours in swimming,

Gary Sr.


Brian MacKenzie and Erin Cafaro MacKenzie join The Race Club team of Expert Technical Coaches

Leave a comment

Announcing strength training, nutrition and recovery consultants to expand the Race Club’s unparalleled swimming resource for optimal performance.

The extended Race Club family welcomes Brian MacKenzie and Erin Cafaro MacKenzie to their staff of consultants. Brian MacKenzie is a world-renowned strength and conditioning coach. He authored the book “Power Speed Endurance: A Skill Based Approach to Endurance Training”
and co-authored “UnBreakable Runner”. MacKenzie created CrossFit Endurance, which specializes in movement mechanics and programming. Believing nutrition is the foundation of all athletes, MacKenzie developed his own performance and recovery supplement, 3FU3L. All of MacKenzie’s companies, under Unscared Inc., are geared towards helping athletes of all levels and sports to push past their fears and limitations and actualize their true genetic potential. MacKenzie and his methods have been featured in many publications from Tim Ferris’s The 4-Hour Body to Men’s Journal to Triathlete Magazine and many more. He trains elite athletes from all over the world.

Erin Cafaro MacKenzie, a two time Olympic gold medalist in rowing, is an avid competitor in sport and life. Erin graduated from the University of California Berkley and was a member of the varsity team that won the 2005 and 2006 NCAA Division I Rowing Championships. At the International level she was a 19 time medalist, which included earning prestigious Gold Medals at the 2008 Beijing and 2012 London Summer Olympics in the Women’s 8+. Erin is currently a highly sought after coach within the competitive athletic community for helping beginners to elite level athletes of all sports get on the right track to winning. She is the Vice President of 3Fu3l (Sports Fuel), a nutrition company very conscious of clean and ethical products which allows tested and health conscious athletes a viable option for supplements. 3Fu3l was actually tested and created on Erin during her buildup to the London 2012 Olympics out of the necessity for a good clean supplement to fuel performance and recovery. Erin is also the Director of Operations at Unscared, Inc. As a decorated Olympian and high level coach Erin loves to share her experience and knowledge with athletes of all levels to help them achieve their optimal performance.

Brian and Erin are based in Orange County, California. As Race Club consultants, they skype with clients from around the globe and do personal consultations with clients in the Orange County area. Swimmers and triathletes appreciate the individual and skill based approach to swimming faster. Brian and Erin enhance the Race Club ideologies and methods in the disciplines of Strength Training, Nutrition and Recovery. Click here to see rates and schedule skype appointments.


What Grade is Your Freestyle Recovery?

6 Comments

When you fill up your tank at the gas station, usually you are offered three grades of gasoline, regular (low octane 87), mid range (about octane 91), and premium (high octane 93). The high-octane gas is more expensive, but it increases the energy and efficiency of the engine. It makes your car go faster.

In swimming, I like to describe the freestyle recovery as having three octane grades; low, medium and high. The lowest octane recovery means that the elbow is bent almost maximally, the length of the arm reduced by half, as it recovers from the release phase after the propulsion and moves to the front of the body for the next stroke cycle. This form of recovery requires the least amount of energy for a given stroke cycle rate, and not surprisingly, it is what we see in most distance freestyle swimmers.

When we get to shorter, middle-distanced races like the 100 and 200 meters, we often see the hand elevating from the water, with the elbow less bent on the recovery. This middle-octane form of recovery requires more work than the low-octane recovery, but produces more kinetic energy for the same stroke rate.

Finally, in the sprint freestyle event, the 50 meter, we often see the hand elevated even further, or even a complete straight-armed recovery, the high-octane recovery. With the arm straightened, the radius of the arm has now doubled from the low-octane recovery stroke. If the stroke rate is the same as with the low-octane recovery, the kinetic energy in this motion is quadrupled. In fact, we often see the stroke rate in the 50 sprint at around twice that of the distance swimmers, which means the energy in the recovering arm may be 8 times greater than for the distance swimmer. That requires a lot more work of the swimmer to create all that energy. So why do it?

Once the stroke rate gets above 80 or so, the recovering arm becomes one of the two coupling motions of the freestyler. The other is the rotating body. The degree of coupling, augmenting the force of the underwater pulling arm, or the kick, is proportional to the energy in the coupling motion. In other words, the more energy in the recovering arm and/or the rotating body, the further down the pool we swim with each pull, so long as the two motions are connected.

Just like in the car, the faster we want to swim, the more octane we need in the recovering motion. Sprinters need high octane in order to win, while distance swimmers often like to use low to medium octane recoveries, saving their energy for the body rotation and the underwater pull and kick.

It makes no sense to use a high-octane recovery, requiring a lot of effort, if the stroke rate is around 60 or slower, a hip-driven freestyle. The reason is that the pulling arm is held out front during most of the recovering motion and by the time it starts its propulsion, the recovering arm is already in the water and lost its kinetic energy. In other words, there is no coupling going on with the pull with this slow of a stroke rate. The motions are not connected.

Because of the sheer mass of the upper body, the rotation of the body is the most important coupling motion we have in freestyle. Therefore, regardless of the level of octane used in the recovery motion, one should always use a fast body rotation with the pulling arm in propulsive phase.

In teaching these various forms of freestyle technique at The Race Club, we often imagine that there is a string going from the shoulders straight up to the sky. With each stroke, we try to get the swimmers to bring the elbow up to the string. In this way, regardless of whether the recovering motion is low, medium or high octane, with the elbow at the string, the body (or at least the shoulders) must be rotated fully. That means that the body must turn quickly to the other side in order for the other elbow to reach the string. The quickness of the body rotation creates a lot of coupling energy for the underwater pull. One can then add the recovering arm’s energy to the body rotation, low for distance, medium for mid distance or high for sprints, to optimize the technique for each race.

No one leaves The Race Club without having at least two freestyle techniques, because there is no one technique that works well for all distances. Some, like Race Club swimmer and Olympic champion Nathan Adrian, change their technique during the race. Nathan often goes from a mid-octane freestyle recovery to a high-octane, straight-armed recovery with a higher stroke rate to finish his 100-meter freestyle. Nathan wins a lot of races that way.

If you need to tune up your engine, come to The Race Club and let us help you determine what grade of arm recovery you need in your freestyle events.

Yours in swimming,

Gary Sr.


Gary Sr. Podcasts All Things Triathlon Swim Training with Kevin Koskella

Leave a comment

Kevin Koskella from Triswimcoach.com interviews Gary Hall Sr. on all things triathlon swim training in this podcast.
-Gary Hall Sr. background
-How to accomplish varying goals
-Triathletes, masters, and age group swimmers
-Mindset – “I am a swimmer”
-Body limitations & core strength
-Minimizing drag and maximizing propulsion
-Hip driven/Shoulder driven freestyle
-Velocity meter 
-Importance of high elbow & stroke rate
-Importance of drag drills
-Swim bench
-Tips for triathletes: flip turns & more

References:

The Race Club – http://theraceclub.com
Velocity meter – http://theraceclub.com/swim-camps/swim-video-analysis/
Tempo Trainer – Tempo Trainer
Freestyle Pull- drag drills: http://theraceclub.com/videos/swimisodes-freestyle-how-to-pull-underwater/
Upcoming Race Club swim camps: http://theraceclub.com/swim-camps/

Listen on iTunes or by clicking here.


The Power of the Surge

9 Comments

At The Race Club, I often ask our campers where is the fastest place one can swim in the water. As you can imagine, most of them say below the surface, but the answer is, of course, above the water, or hydroplaning. Unfortunately, it is estimated that in order to hydroplane, the human body needs to be going around 15 miles an hour, or faster. With world record speed in the 50 at just over 5 miles an hour, I don’t think we will be seeing anyone hydroplaning soon.

So, if we can’t swim on top of the water, where is the next best place to be? Under water is the next best place (our campers aren’t too far off). In fact, swimmers with very strong kicks are able to go faster underwater, with legs only, than they can swim on the surface with arms and legs going at full speed. Part of the reason for this is because the pulling motion contributes to both propulsion and frontal drag. However, the biggest reason is because of surface or wave drag.

Surface drag occurs only when the swimmer is on the surface and is caused by the body moving through the interface between air and water. Just like a boat, swimmers create a small bow wave, mostly from the head, as they move through the water on the surface. Surface drag is as significant for a swimmer as it is for a submarine. Submarines go much faster under water than they go on the surface, and so do humans.

When we speak of underwater movement of the swimmer, most coaches think in terms of starts and turns, and after 15 meters the swimmer is, by the rules, relegated to the surface. Indeed, the underwater speed on both starts and turns is extremely important. What most coaches don’t realize is that each stroke has an underwater phase…or at least it should. Breaststroke is the most obvious one, where in all but the 50, where stroke rates approach 60 or higher, the body submerges completely during the strike phase after the kick propulsion. That is when the breaststroker achieves the greatest speed; when he/she surges forward.

Though it is less noticeable, there is also an under water surge phase in freestyle, fly and backstroke. The under water surge should occur at the peak velocity in the stroke cycle, so the drag coefficient is lowest when the speed is highest. Frontal drag is proportional to the speed squared, not just the speed. In freestyle, the peak velocity occurs when one hand first enters the water. For hybrid freestylers, like Phelps, Lochte or Ledecky, or hip-driven freestylers, liked Sun Yang, the surge occurs right after the breath stroke, when the head submerges momentarily. In butterfly, the underwater surge occurs after the second down kick, when both hands have entered the water and head is tucked down. In backstroke, one often sees a slight trickle of water come over the face of the swimmer as the hand is nearing entry into the water, the surge point.

In order to surge, a swimmer has to create propulsive forces to surge with, and, at the right time, the swimmer must be under water. The propulsion comes from two sources substantially, the hands and the feet. One can augment the propulsive forces of the hands and feet by using coupling motions in all four strokes. In freestyle and backstroke, the coupling motions are the rotating body and, depending on the stroke rate, the recovering arm. In breaststroke, the coupling motions that augment the kicking force are the downward pressing of the upper body and snapping down of the head. The coupling motion that augments the pull is the upward motion of the upper body and head. In butterfly, the coupling motions are primarily the arms swinging forward and the head snapping down, timed with the second down kick. We are just beginning to understand how important these coupling motions are to swimmers to increase power, speed and distance per stroke.

I never would have believed that someone could swim a 200 meter butterfly in 1:55 with a stroke rate of 31 (typical stroke rates are 48 or so in the 200). Yet Yajima Yuma from Japan did that in the World University Games recently, maximizing the force of his strong kick with an elevated diving body, strong forward arm swing and head snapping down, all coupling motions, into an underwater surge in a streamlined position. That swim is a testament to the power of coupling.

Do not underestimate the importance of getting the head and most of the body underwater during the surge phases of each stroke. One millimeter under water is enough to eliminate the surface drag. Although in the 50 sprints, because of the high stroke rates, we would be hard pressed to say that there is any significant surge point, in all other races, surging underwater is a key to fast swimming.

Best in swimming,

Gary Sr.


Create a Thing of Beauty with Your Backstroke Start

5 Comments

Published on SwimSwam.com

A great backstroke start is a thing of beauty. I liken it to a dolphin leaping out of the water and piercing the water through a hula-hoop, or David Boudia, scoring a perfect 10 off of the 10-meter tower. You see no splash and hear no splash.

Unlike from the starting block, the backstroker begins the race at a lower height. Gravitational forces are still important, however, so in order to take advantage of them, the backstroker must launch upward, not just backward, to achieve the greatest speed at entry. Further, in order to reach the highest speed on the backstroke start, the swimmer needs to avoid dragging any part of the body through the water. The body needs to go completely airborne during the start.

If you could freeze the backstroker at the very peak height of the start, you would find the feet and hands are very close to the water, yet the bum is a couple of feet above the surface of the water, with the body forming an upside down U shape. In other words, the body is arched way back, and is completely out the water.

If a swimmer is to have any chance of reaching this extraordinary height on the start, he or she must launch from a high position. Taking your mark, the swimmer must elevate the body until the bum is right at the surface or above the water. This is most effectively achieved when the toes are very near the surface and gripping the touch pad. On a flat wall, the feet can be placed slightly above the surface of the water.

Upon elevation of the body, the back should be straight and the chin held upright, rather than looking downward. Some backstrokers prefer to keep the bum further away from the wall than the head, while others are positioned more straight up and down. Just like doing a pull up, it requires a lot of strength to reach this high position. With the additional weight from the body leaving the water, there is also more risk of the feet slipping down the wall. World-class backstrokers Missy Franklin and David Plummer know what that feels like, as that mishap occurred to them in the Olympic Games and World Championships, respectively.

Much of the risk of the feet slipping has been mitigated by the introduction of the backstroke wedge, an adjustable plate that sits against the wall under the surface, helping prevent the feet from slipping down. This device is now approved by FINA for all major swimming championships.

When given the option of a vertical or horizontal bar on the starting block to grasp to elevate the body for the start, most elite backstrokers at the World Championships chose the vertical over the horizontal bar. Those that chose the horizontal bar, always selected the higher bar, not the lower one.

Once elevated, with the sound of the beep, the swimmer throws the arms more or less straight back overhead, and extends the head backward, as if looking upside down to the end of the pool. The energy of the arm swing and the head snapping backward are both coupling motions that augment the force of the feet pushing the body upward and backward. With the back fully arched, the swimmer avoids contact with the water until the hands enter first, and with the high launch, reaches a greater speed at entry. The hands should be wrapped together wrist over wrist at entry in a tight streamline.

Just before the hands enter the water, the head begins to come up and the back begins to straighten to avoid going too deep with an overly arched body position. Since the heel of the foot is the first part of the foot to reach the water, the foot actually relaxes from its plantar-flexed (pointed) position to create the least amount of drag at entry.

Once the body is underwater, the real backstroke race begins with the dolphin kicks. In fact, in short course races, more of the race is swum underwater dolphin kicking rather than on the surface backstroking. The faster the kicker, the better the start becomes. Since the swimmer usually goes deeper with a backstroke start than with a freestyle start, the minimum number of dolphin kicks to reach the breakout is usually 5 or 6, with the maximum to reach 15 meters usually 10 to 12 kicks. The right number of kicks to reach the surface for each swimmer depends entirely on the speed of the kicker.

Both Missy Franklin and Tyler Clary have convinced me that wearing a nose clip in backstroke makes perfect sense…unless you have one of those upper lips that can occlude your nose. The reason is that with the nose clip, the air can be retained in the lungs, keeping the body weight at zero right up to the break out. With much of the air expired out of the lungs, the body weighs about 8 lbs by the time the swimmer is ready to break out. Another advantage of the nose clip is that the swimmer can burst exhale right before breaking out and does not need to take a gaspingly deep first breath to refill the lungs. The quicker first breath enables the swimmer to explode out of the breakout with less delay and a faster stroke rate.

The best way to improve your starts is by practicing starting. But first, watch the amazing start of World Champion backstroker, Junya Koga.  At The Race Club, we often do backstroke sets by beginning with a start, rather than a push off the wall, just to get that extra practice in.

Yours in swimming,

Gary Sr.


What’s So Important about Dolphin Kick?

Leave a comment

Dolphin kick, which is now used in all four strokes, is often referred to as the ‘fifth stroke’. It is so important to faster swimming that Olympic coach Eddie Reese dedicates sets in each practice to improving the dolphin kick. It is no wonder that Texas had 6 out of 8 finalists in the men’s 100 yard fly at the NCAA Division 1 Championships this year. If you aren’t devoting a lot of effort to building a stronger dolphin kick, then you should rethink your training.

When I ask our Race Club campers how many dolphin kicks they are allowed to take during a butterfly stroke cycle, the usual answer is two. The real answer is four, two down kicks and two up kicks. In analyzing the acceleration and deceleration from our velocity meter studies during the dolphin kick, it appears that the down kick provides about 80% of the propulsive kick force and the up kick about 20%. However, the up kick provides another important function, so it cannot be taken lightly without paying a big price.

The muscles driving the up kick, primarily the lower back, hamstring and gastrocnemius (calf) muscle, are not as strong as the quadriceps muscles, primarily driving the down kick, yet they need to be developed for this important motion. The motion of the feet during the up kick is the only motion of the body that provides propulsion without having the feet move backward in the water. Since water is liquid, propulsion is derived from the propelling surfaces (hands and feet) moving backward relative to the still water (Newton’s third law of motion…action and reaction). During the propulsive phase of the down kick and the pull, the feet and hands are moving backward, but not during the up kick.

The reason the up kick can provide propulsion while the feet move forward is because the preceding down kick creates a vortex (wake) behind the feet that moves forward and downward, trailing the feet. In addition, there is a vortex (wake) behind the body of the swimmer, following the swimmer. The combination of these two vortices causes a stream of water to move forward behind the swimmers’ feet. In order to provide propulsion, the feet need to be moving backward relative to the still water. Since the water behind the foot is moving forward, the motion of the foot during the up kick can move forward at a speed slower than the vortex and still create propulsion. That motion also creates a vortex that helps the subsequent down kick. Therefore, the more aggressive the up kick, the more powerful is the following down kick.

One of my favorite dolphin kick sets is five, 45-second vertical kicks (with or without fins), with the arms held in a streamline above. 15 seconds of rest are taken between each vertical kick. On virtually any horizontal dolphin kick set, the swimmer can take it easy on the up kick motion. Not so on the vertical kick, if the swimmer wants to keep the head out of the water in order to breathe.

Work on the dolphin kick, whether it is on your side, stomach, back (on your back the up kick is really the down kick) or vertically. But work it. Particularly, work on the weaker part, the up kick, as it is more important than you might think.

Watch The Fifth Stroke Part II Swimisode

Yours in swimming,

Gary Sr.